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THE MECHANICAL EFFICIENCY AND KINEMATICS 
OF P A N T O G R A P H - T Y P E  MANIPULATORS 
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Pantograph mechanism has been well known for its motion feature of decoupled kinematics. Planar pantograph mechanism has 
been extensively used in machinery since the seventeenth century. Recently, three dimensional pantographs have been used in 
walking machine leg and manipulator designs. This is because, the pantograph mechanism possesses the following advantages 
decoupled kinematics, higher energy efficiency, good rigidity, less link inertia and compact drive systems. In this paper, the 
mechanical efficiency of the kinematics of pantograph type manipulators are studied. The mechanical efficiency of pantograph 
mechanisms and conventional open-chain and closed-chain type manipulators are studied and evaluated using the concept of 
modified geometric work. The kinematics of six-d.o.f., pantograph type manipulators are studied and special :mechanisms which 
simplify the kinematics are introduced. The computational complexity of both Cartesian and cylindrical type pantograph 
manipulators are evaluated and compared with a PUMA type manipulator. 
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1. INTRODUCTION 

In a strict sense, the term pantograph mechanism is 
reserved for a special type of five-link mechanism (see Fig. 1) 
which possesses a decoupled kinematic relationship between 
the output motion of the reference point F and the two input 
degrees of motion. The closed-chain structure is a parallelo- 
gram and points A, B and F are maintained collinear at all 
times. The driving points of the two input degrees of freedom 
can be respectively assigned to points A and B, or they can 
be both assigned to either one of these two points. If the two 
input degrees of motion are driven separately by two linear 
actuators which are parallel with the two axes of the refer- 
ence coordinate system, the kinematic relationship between 
input and output motion becomes decoupled. This type of 
pantograph mechanism, which was called simple pantogrpah 
in (Song, Lee and Waldrom, 1987) has been extensively used 
in embroidering machines, copying machines and magnifying 
mechanisms since the seventeenth century. Later, in the 
nineteenth century, a more general form of pantograph, the 
skew pantograph or the plagiograph, as it was called by its 
inventor, was introduced by Sylvester (Hobson, et al., 1953). 
Referring to Figure 2, the skew pantograph is obtained by 
attaching two similar triangulated rigid links to the parallelo- 
gram ACDE. If one carefully arranges the orientation of the 
two input linear axes with respect to the reference coordinate 
system, a decoupled kinematic relationship which is similar 
to that of the simple pantographs can be obtained. The way 
to define the orientation of the input linear axes was shown 
in (Song, Lee and Waldron, 1987) and will be reviewed in a 
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later section. 

Although both the simple and skew pantographs are planar 
mechanisms, they can be extended to a three-dimensional 
mechanism by the following two methods : The first method 
is to mount the frame on the base via a revolute joint (see Fig. 
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Fig. 1 Simple pantographs 
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Fig. 2 A skew pantograph 
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Fig. 3 A cylindrical type pantograph manipulator 

3). If the axis of the revolute joint is in the plane which 
contains the planar pantograph, the mechanism has decou- 
pled kinematics in a cylindrical coordinate system. This type 
of pantograph is called a cylindrical pantograph. The second 
method is to mount the two, input points A and B on a pair of 
revolute joints which have their axes parallel to one another 
(see Fig. 4). Thus, a lateral movement of one input point will 
cause the pantograph to stretch and rotate simultaneously, 
and the motion of the output point becomes three dimen- 
sional. Although a skew pantograph can generate three- 
dimensional motion, it was shown in (Song, Lee and Waldron, 
1987) that only the simple pantographs have decoupled 
kinematics in Cartesian coordinate system. This type of 
three-dimensional pantograph is called Cartesian type panto- 
graph and was first introduced by Hirose and Umetani in 
(Hirose and Umetani, 1980). They designed a quadrupedal 
walking machine with four Cartesian type pantograph legs. 

In recent years, pantograph mechanisms have been fre- 
quently used in the robotics area, such as in the design of 
walking machine legs (Hirose and Umetani, 1980; Hirose, 
1984; Kesseis, Rambaut and Penne, 1981; Song, Waldron 
and Kinzel, 1985) and manipulators (GAC Corp., 1982 ; Song 

( 

F 

and Lin, 1987; Yang and Lin, 1985). This is because, in 
addition to decoupled kinematics, this ancient mechanism 
possesses many other important advantages. These advan- 
tages include a high mechanical efficiency, high payload/ 
weight ratio, low link inertia and compact drive systems. The 
high mechanical energy efficiency is because no geometric 
work is consumed during operation. This will be explained in 
detail in a later section. The high payload/weight ratio is due 
to the closed-chain structure of a pantograph. The low link 
inertia is because the actuators are mounted low on the 
rotating base. The compact size of the drive systems are due 
to the magnification motion feature of pantographs. Because 
of these advantages, pantograph mechanisms are especially 
suitable for the applications of walking machines, where 
computational efficiency of inverse kinematics and dynamics 
(Song, lee and Waldron, 1987), energy efficiency and mechani- 
cal strength are important. Since the demands on 
computational and mechanical efficiencies of manipulators 
are becoming more strict, pantograph mechanisms will be 
more attractive in future manipulator design. 

Although some of the advantages of pantograph mecha- 
nisms have been scatteredly mentioned in literature (Hirose 
and Umetani, 1980; Hirose, 1984;Hobson, et. al., 1953; 
Song, Waldron and Kinzel, 1985 ; Song and Lin, 1987 ; Yang 
and Lin, 1985), the advantages of high mechanical efficiency 
and decoupled kinematics were not fully investigated. Hence, 
it is the goal of this paper to present to the readers a complete 
study of these two aspects. In the following, the basic 
kinematics of Cartesian and cylindrical pantographs is revi- 
ewed first. The mechanical efficiency of the pantograph is 
then studied and compared with other types of manipulators. 
The kinematics of a six-d.o.f, pantograph type manipulators 
are is then studied in detail. Two wrist mechanisms which 
can simplify the kinematic relationships are also discussed. 

2. BASIC KINEMATIC F E A T U R E S  
OF P A N T O G R A P H S  

The basic kinematic features of pantographs are reviewed 
in this section. Figure 2 shows a skew pantograph mecha- 
nism. The angle 0 is called the skew angle. ACDE is a 
parallelogram and BCD and DEF are two similar triangulat- 
ed links. It has been proven that 2 A B F  is similar to either 2 
BCD or AIDEF as long as ACDE is kept a parallelogram 
(Hobson, et. al., 1953). Thus, the motion of a pantograph can 
be fully represented by the imaginary, dashed triangle ABF, 
which was called equivalent triangle in (Song, Waldron and 
Kinzel, 1985). That is, given the positions of points A and B, 
the position of point F can be obtained by constructing the 
equivalent triangle. 

The fundamental motion feature of a skew pantograph is 
stated as: If point A is fixed and point B traces a given 
curve, then point F traces a similar curve. The magnitude of 
the curve is magnified by a ratio R and the orientation is 
rotated through the skew angle 0 with respect to the given 
curve. Similarly, if point B is fixed and point A traces a given 
curve, then point F traces a given curve, The magnitude of 
the curve is magnified by a ratio R" and the orientation is 
rotated through an angle r with respect to the given curve, 
where 

Fig. 4 Schematic diagram of a three-d.o.f. Cartesian type panto- A F  , B F  2 1 
graph R =  A B '  R = A B  - =  ( I + R  -2R .cos0 )5  (1) 
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Based on the concept: of equivalent triangle, several sets of 
principal axes were defined in (Song, Lee and Waldron, 1987). 
If the actuators are mounted in line with the principal axes, 
the kinematic equations of input points and reference point F 
are fully decoupled. Referring to Case 1 of Fig. 5, points A 
and B are the input points for the X-and Y-movements of 

point F, respectively. The U-axis  is obtained by rotating the 
X-ax is  by an angle of - r  and the V-axis is obtained by 
rotating the Y-axis by an angle of 0 V-and V-axes are the 
principal axes of this case. In Case 2, points A and B are the 
input points for the Y-and X-movements  of point F, respec- 
tively. The U-axis  is obtained by rotating X-ax is  by an 
angle of -0 and V-axis is obtained by rotating Y-axis  by an 
angle of -r Similarly, one can also define the principal axes 
for the cases where both input degrees of motion are assigned 
to just one input point (either A or B). When the skew angle 
0 becomes 0 ~ or 180 ~ the pantograph geometries become the 
simple pantographs in Fig. 1. 

In the following, the kinematics of both Cartesian and 
cylindrical type pantographs are reviewed : 

2.1 Cartesian Type 
Referring to Fig. 4, the forward and inverse kinematics of 

the Cartesian type pantograph have very simple forms. Since 
only a simple pantograph can be constructed as a Cartesian 
type pantograph, the skew angle is selected as 180 ~ for 
discussions. From Eq. I1), 0 = 180 ~ gives R' = R + 1. Referring 
to Fig. 4, the forward position equations are : 

[x.] 1.0 0jill Y~ = 0 ( R + I )  0 (3) 

Zj 0 0 ( R + I )  

where Xf, I/i and ZI are the coordinates of the hand referen- 
ce point F ; U, W and V are the linear displacements of the 
input points A and B along the three actuator axes�9 U and V 
are measured from the intersection of these two axes. W is 
measured from the intersection of U-and W-axes. The 
inverse position equations can be derived directly from Eq. (3) 
as follows : 

= 0 I/(R+ I) Y, (4) 

0 0 t / ( R + I )  Z, 

As is apparent, all the d.o.f, are fully decoupled. The inverse 
velocity and acceleration equations can be easily obtained by 
taking the first and second derivatives of Eq. (4), respectively. 

2.2 Cylindrical Type 
A three-d.o.f, cylindrical type pantograph manipulator is 

shown in Fig. 3. A cylindrical coordinate system (P, Q, r is 
chosen as the reference frame to describe the motion of the 
hand reference point F. The forward position equations can 
be derived as: 

I:l [ "~ ~ [!1 [!1 -- 0 R 0 + 

o o 1 
(5) 

where (P, Q, r is the coordinates of point F ; U and V are 
respectively the displacements of the two input points A and 
B and are measured from the intersection of the two princi- 
pal axes ; e and h are the offsets of the intersection along P 
and Q axes, respectively. The inverse position equations can 
be obtained as: 

~ ~  ,,. 0 0 [il [ j + < (6) 

Again, all the d.o.f, are fully decoupled. The inverse velocity 
and acceleration equations can be obtained by taking the first 
and second derivatives of Eq. (6), respectively. 

If the hand reference point is deviated from the point F, the 
complexity of kinematics will increase tremendously. Hence, 
the main advantage of the pantograph manipulator is com- 
promised and such a deviation of the hand reference point 
should be avoided. 

3. M E C H A N I C A L  E F F I C I E N C Y  

That a pantograph type walking machine leg possesses a 
very high mechanical efficiency was shown by Hirose and 
Umetani in Hirose and Umetani, (1980). They pointed out that 
the high mechanical efficiency was due to a gravitationlly 
decoupled actuator (GDA) system used in the pantograph leg. 
That is, the actuators are geometrically decoupled between 
tim gravitational direction and its perpendicular direction�9 
Any robot which uses a GDA system, such as a conventional 
Cartesian manipulator, has high mechanical efficiency�9 They 
also explained the inefficiency of an open-chain walking 
machine leg. But they did not provide any numerical mea- 
surement to evaluate the mechanical efficiency of a robotic 
system. In (Waldrom and Kinzel, 1981) Waldron and Kinzel 
discussed about the relationship between actuator geometry 
and mechanical efficiency in robots. They pointed out that 
the efficiencies of most robots of this generation were very 
low. The reason for the low efficiencies were largely due to 
the actuators' acting as brakes ; i.e., they are "back-driven". 
They termed the energy lost when the actuator acts as a 
brake as geometric work. They illustrate the concept of 
geometric work using a force-distance diagram of one linear 
actuator after it executes through a complete cycle (see Fig. 
6). The lower part (shaded area) is negative work (the dis- 
tance is reducing) and was called geometric work. The white 
area is the net output work. Although the concept of geomet- 
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ric work was very helpful to understand the poor efficiency of 
many robots, the definition of geometric work was somewhat 
ambiguous because of the following reasons : First, the geo- 
metric work should be related to all the actuators in one 
system, not just one actuator. Second, not all negative works 
are geometric work and some positive works can also be 
geometric work. This will be explained shortly. Here we 
redefine the geometric work as the sum of the absolute values 
of the works consumed by all actuators of one robotic system 
subtracted by the absoulte value of the output work done by 
the system to the environment. Thus we can combine geomet- 
ric work and output work to calculate the mechanial effi- 
ciency of a robotic system as : 

Mechanical Efficiency= 
Output Work 

Output Work +Geometric Work (7) 

11 T l  
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m 
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path with a constant speed. We assume that the system is 
frictionless ; the two links are weightless and only the object 
carried by the end-effector has significant weight. Since there 
is no change in the energy state of the object, the output work 
done by the maniPulator to the object is zero. The motor at 
the base joint is acting as a brake and doing negative work 
because the output torque is in the opposite direction of the 
motor motion. The motor at the elbow joint is doing positive 
work. The overall works done by these two motors are shown 
in Fig. 7 (a). The area under T1 should be equal to the area 
under 7"2 since the sum of them is equal to the output work 
which is zero. This also means that all the positive work done 
by the elbow motor is entirely consumed by the base motor as 
negative work. Both the positive and negative works contrib- 
ute no output work and are related to the geometry of the 
manipulator. Hence, the sum of the absolute values of these 
two works js the geometric work of the system. Now, refer- 
ring to Fig. 7 (b), if we mount a pulley and chain system on the 
two joints and move the elbow motor to the base to be 
co-axial with the base motor, the geometric work of the 
system is reduced. This is because the torque at joint 2 is 
transmitted to the elbow motor through the chain system and 
the torque at the base motor becomes W-11cos01. The angu- 
lar displacement of the elbow motor is also changed. Hence, 
we can improve the mechanical efficiency of the two-link 
system by adding such a chain and pulley system. The 
improvement will be even greater if we consider the weight of 
the elbow motor in the calculation. Now, if we replace the 
chain and pulley system with a parallelogram as it is shown 
in Fig. 8, the geometric work remains unchanged. The func- 
tion of the parallelogram is kinematically equivalent to the 
pully and chain system. Now, let us consider the case of a 
pantograph manipulator. Referring to Fig. 7 (c), the vertical 
actuator is fixed and doing no work. The horizontal actuator 
is moving frictionlessly and also doing no work. Thus, geo- 
metric work is zero. 

Let us consider the case that the end-effector is moving 
downward along a vertical path. For the open-chain manipu- 
lator, referring to Fig. 9 (a), the base motor is doing negative 
work and the elbow motor is doing positive work. The output 
work is negative since the potential energy of the object is 
reduced. Since the sum of the negative and positive works of 
the two motors should be equal to the negative output work, 
the geometric work is equal to twice the positive work of the 
elbow motor. For the open-chain manipulator with pulley and 
chain system, the geometric work is reduced due to the 
above-mentioned reason [see Fig. 9 (b)]. The same situation 
is found in the closed-chain parallelogram manipulator. As 
for a pantograph manipulator, referring to Fig. 9 (c), the 
horizontal actuator is fixed and doing no work and the 
veritical actuator is doing negative work. Since the amount 
of the negative work is equal to the negative output work, the 
geometric work is zero. Hence, we may conclude that a 
closed-chain manipulator (or an open-chain manipulator with 
pulley and chain system) has better mechanical efficiency 
than an open-chain manipulator and a pantograph type 
manipulator has the best mechanical efficiency of all type 1 
actuators. 

4. KINEMATICS OF SIX-D.O.F. 
P A N T O G R A P H  M A N I P U L A -  
TORS 

We have seen the kinematics of three-dimensional panto- 

graphs in a previous section. In this section, we will discuss 
about the kinematics of six-d.o.f, pantograph type manipula- 
tors. A six-d.o.f, pantograph type manipulator can be 
obtained by attaching a three-roll wrist at the end link of a 
three-dimensional pantograph. The wrist center should be 
coincident with the point F in order to have a simpler 
kinematic relationship. For a six-d.o.f., Cartesian type panto- 
graph manipulator (referring to Fig. 4), the inverse position, 
velocity and acceleration analyses of the first three axes (U, 
V and W) are very simple since these three degrees of 

freedom are fully decoupled. The analyses 9f the last three 
axes (04, 3s and 06), however, are not that simple due to the 
following reasons : The wrist experiences a pitching motion 
when either one or both of the first two axes (U and V) 
move. That is, the angle a2 changes. Also, the wrist experi- 
ences both a pitching and yawing when the third axis W 
moves. This is, both ~z2 and r change. Since these pitching and 
yawing motions as well as the last three joint axes affect the 
orientation of the wrist, the inverse position analysis of the 
last three axes is more complicated. The inverse velocity and 
acceleration analyses become very complicated because the 
first and second derivatives of the angle a2 have very compli- 
cated forms [refer to Eq. (51) in Appendix). Thus, the advan- 
tage of simple kinematics diminishes. Hirose and Umetani 
introduced a pair of differential mechanisms which can elimi- 
nate the unwanted pitching and yawing motions of the wrist 
due to the motions of the first three axes (Hirose and 
Umetani, 1980). After some modification this pair of differen- 
tial mechanisms is drawn in Fig. 10. During motion, the 
bottom bevel gear at joint U does not rotate and, if both 
motors 4 and 5 are stationary, the yawing motion of the wrist 
is eliminated by the motion of the differential mechanism. 
Moreover, the pitching motion is eliminated by the parallelo- 
gram motion performed through the pulley and chain system. 
Hence, the kinematics of the last three d.o.f, is fully decou- 
pled from the first three d.o.f.. The derivation of the 
kinematic of equations is straightforward and is not present- 
ed here. The other advantage of this mechanism is that 
Motors 4 and 5, which control the pitching and yawing 
motion of the wrist through the differential mechanism, are 
mounted low so that the wrist inertia is reduced. 

/,' / " ,  ' , , I X ,  "\ 
/ /  / i , /  ',. \ ,, ,, 

I /  / i \ r \ - ~  \ \ 
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Fig. 10 A six-d.o.f. Cartesian type pantograph manipulator with a 
pair of differential mechanisms 
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Fig. 11 A kinematic model of a six-d.o.f, cylindrical type panto- 
graph manipulator at a general position 

pantograph if we forget to include this pitching motion in the 
wrist kinematics. The reason we adopt this model is that the 
closed-chain geometry of the pantogrpah can be treated as an 
open-chain geometry for easy visualization.) The first wirst 
axis, joint 4 in the figure, is mounted to be perpendicular to 
the plane defined by the two prismatic joint axes so that the 
pitching angle a2 due to U and/or V axes can be included in 
the rotational angle of axis 4. (That is, the actual rotation 
about axis 4 is az+ 04 although the joint variable of joint 4 is 
0, alone.) If the axis 4 is not mounted in the above-mentioned 
direction, an additional coordinated transformation is needed 
and the results become more complicated. This special 
arrangement of axis 4 becomes unnecessary if a parallelo- 
gram (pulley and chain) mechanism is added to the manipula- 
tor (see Fig. t2). The parallelogram motion eliminates the 
unwanted pitching motion of the wrist due to the motion 
along U and/or V axes. Joints 5 and 6 are set up in a way 
such that the three wrist axes are orthogonal and intersect at 
the concurrent point F. Let us first consider the case of a 
six-d.o.f., cylindrical type pantograph manipulator without a 
parallelogram mechanism. 

For the six-d.o.f., cylindrical type pantograph manipulator, 

the kinematics is somewhat more complicated and deserves a 
detailed study. Figure 11 shows a kinematic model of a six-& 
o.f., cylindrical type pantograph manipulator at a general 
position. The closed-chain pantograph mechanism is now 
replaced by two independent prismatic joints. The vertical 
and horizontal prismatic joints generate a vertical displace- 
ment VR and a horizontal displacement UR" of the end- 
effector, respectively. Since R and R'  are known constants, 
the actual input variables U and V can be easily obtained 
from these two joint variables. The pitching motion of the 
wrist due to the linear motions along the U and/or V axes is 
temporarily not considered here and will be included in the 
kinematics of the wrist. (At this point we should emphasize 
that this model does not exactly represent the cylindrical 

4.1 Inverse Posit ion Analysis 
While standard methods such as the Denavit-Hartenburg 

and zero position notation (Gupta, 1981) methods can be 
applied to derive the inverse position equations, we adopt the 

following method which was introduced by Hunt (1986) 
because it takes least efforts to obtain the solutions. This 
method allows us to derive the inverse position equations by 
direct observation. 

Referring to Fig. 11, the hand position is specified by the 
position of point P and the axial and transverse hand vectors, 
namely Ua and Ut, respectively. The position of wrist center 
F can be computed as 

F = H - d~a (8) 

Also, we can easily write down the coordinates of 0d0s), 
which is located at wrist center, and the direction cosines of 
the hand axial axis, namely uax, ua.y and ua~, by direct 
inspection of Fig. 11. 
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X f  = ( UR'  + e)cosO~ 

Y j  = ( UR" + e) sinO1 

Z j =  V R + h  

u ~  =cosO~ cos (04 + a2) cosOs- sinO~sin05 

u~y = sin0~ cos (0, + a2) cosOs + cos0~sin0s 

ua, = - sin (0, + a2) cos0s 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

The angle a2 can be computed according to Eq. (51) in the 
Appendix. The first three input variables 0,, U and V can be 
obtained from Eqs. (9)-(11) as: 

M~ 0~ = tan-~(~(~ - ) (15) 
f 

Fig. 12 A six-d.o.f, cylindrical type pantograph manipulator with ~_  
a parallelogram mechanism U = (X/c0s0~+ Y/sin0~-e)  (16) 
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V = I ( z ~ - h )  (17) = tan_~( sin& ~ (28) 
0~ \ cos0~ / 

El iminat ing the terms which contain 0 , +  a~ in Eqs. (12), (13) 
leads to the following solution of joint angle 0 s : 

0 s= s in- '  (u=~cos0~- u ~ s i n 0 , )  (18) 
Hence, we have two solutions of 0s. Now, el iminating the 
terms which contain 0s in Eqs. (12)~(14) gives the solutions of 
c o s ( ~ +  a~) and sin(04+a~) as :  

u~cos0~ + u~us in0 ,  
cos (04 + a~) = cos0s (19) 

s in(04+ a~) - u~, cos0s (20) 

This  gives 

0, = - a~ + tan%( 
sin (0~+ ff~) 

(21) 
cos (04 + a~) / \ 

4 . 2  I n v e r s e  V e l o c i t y  A n a l y s i s  
In a six degrees-of-freedom manipulator,  the six joint rates 

( 4 1 -  46) of a manipulator  are related to the anglar  veloci ty 
(con) and linear velocity (~7~) of the hand by a 6 •  Jacobian 
mat r ix  [J] (Whitney, 1972). The  Jacobian mat r ix  can be 
formed according to the following equat ion : 

i ~ col. jt~ col. 
(prismatic) (revolute) 

where u, is the unit vector  along joint i ; Pj is a point at joint 
j and H is a point at the hand. Vector  PjH is a vector  from 
P~ to point H.  The  i t~ column is applied to a revolute  joint. 
In order to obtain a simple form of the Jacobian matr ix,  we 
will formulate  the Jacobian mat r ix  according to an imagi- 
nary point F which is at tached at the hand and is coincident 
with the wrist center. The  linear veloci ty of point F can be 
calculated from the known linear veloci ty at the tip of the 
hand as : 

The  t ransverse vector  ut is used to calculated 06. Vector  ut 
can be related to the unit vector  j by the fol lowing corrdinat-  
ed t ransformat ions  : 

~, = R,R2R3R4RsR8 ] (22) 

where f = (0,1,0) t and R / s  are the rota t ion matr ices  which can 
be constructed according to the coordinate  systems. It should 
be noticed that  the coordinate  systems are  not set up accord- 
ing to the Denavi t -Har tenburg  notation. 

[R,] = sin01 cos0~ , [R2]=[Ra] = 0 1 , 
0 0 0 0  

cosc~ 0 sing 
o ]  

[k4]:  o 1 c 'osJ - sinc~ 0 

[Rs] = sin0s cos0s , [R~]= 0 cos06 - s in06  
0 0 0 sin06 cos06 

where 8=04+a2. Multiplying both sides of Eq. (22) by 
(R~R2R3) '~ and expanding both sides gives three equat ions :  

ut~cos0~ + utysin0~ = -cos3sinOscosO6+sinSsin06 (23) 

ut~sin0, + ut~cos0~ = cos0scos0~ (24) 

ut ,  = sinc~ sin05cos06 + cos8 sin08 (25) 

El iminat ing the terms which contain 0s from Eqs. (23) and (25) 
gives the solution for sin0~, and cos0~ from Eq. (24) as :  

cos06 -  u,xsin0~ + m~cos0, 
cos05 (26) 

sin06 = ( ut,cos0~ + utysinO,) sin3 + ut~cos3 (27) 

~ / =  g h -  Nh • d (30) 

Where d is the distance from wrist center to the hand point 
H.  The  angular velocity is the same for all points on the same 
rigid body. Hence, 

c5/ chh (31) 

Since the end-effector reference point is now selected at the 
wrist  center  where three axes  are co-intersecting, the 
Jacobian mat r ix  according to Eq, (29) becomes : 

[J] [ a, o o a4 z~s a0] 
zL• r~ uz u3 0 0 0 

(32) 

where r, is the position vector  of wrist point F in the fixed 
coordinate.  Then by observat ion of Fig. 11 we can easily 
obtain the elements of Jacobian matr ix  as : 

0 0 0 - sin0, cos0,sin3 

0 0 0 

g/ - (R 'U+e)s inO~ 0 R'cos0~ 

(R'U+e)cosO~ 0 R'sin0~ 

0 R 
cos0~cosc~cos 0 s -  sin0,sin05] 

sin 0,cosc~ cos 0s + cos 0, sin0~] 

/ 
0 J 

cos0~ sin0~cos3 

0 cosa 

0 0 

0 0 

0 0 

04 (33) 

It should be noticed that columns 2 and 3, respectively, are 
multiplied by constants R and R'.  This  is because the joint 
variables  of these two joints were selected R V  and R'U,  
respectively, and only l)" and 0 should remain in the 6 x 1 
column vector.  Now, we have to include the joint rate  change 
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a~ into the top three elements of columns 2 and 3 (Remember 
that the model in Fig. 11 does not exactly represent the 

motion of a pantograph.) In order to do this we have to 
differentiate a2 [refer to Eq. (51) in Appendix]. The resultant 
equation is quite complicated and the terms of U and II are 
coupled together. We can set one of Ll and l? to zero to 
obtain the relationship of d,2 and the other. Thus, we can 
obtain the following equation : 

a 2 = A . I J + B . 9  (34) 

joint rates are solved from Eq. (36) through (38) as: 

0s = (W/xcosOl+wsysinO1)sin~4+ (wfz-- 01)C0S04 (45) 

�9 1 
06 = f { (O)fxCOS 01 + O.)fy S in 01 ) COS 04 

- (cos.- 01)sin0,} (46) 

t)~ = - w/~sin01 + w/ycos 01 - O~sin 05 (47) 

where A and B are very lengthy coefficients. Finally, the 
Jacobian matrix of the six-d.o.f., cylindrical type manipulator 
is obtained by replacing the upper left 3 • 3 matrix of Eq. (33) 
with the following: matrix : 

0 -B-s in0~ ] - A" sin01] 
l 

0 B'cos01 A- 
1 0 :os01 

(35) 

Since the computation of coefficients A and B are computa- 
tionally inefficient, the simple kinematics of the three- 
dimensional cylindrical pantograph is no more maintained. 
Thus, from the point of view of computational efficiency, it is 
more advantageous to include a parallelogram mechanism 
into the system Isee Fig. 12). The parallelogram motion 
through the pulley and chain system eliminates the unwanted 
pitching motion of the wrist. With such an inclusion, the 
Jacobian matrix of the six-d.o.f., cylindrical type pantagraph 
manipulator is exactly the same as in Eq. (33), except that the 
angle 3 should be replaced with 0~ since the angle a2 is no 
more in existence. The inverse velocity analysis is obtained 
by multiplying Eq. (33) out : 

W/x = -- O, sin 01 + 05C0 S 01sin 4 + 08 (COS 01 CO S4COS Os 
- sinOlsinOs) (36) 

co/y = + O,sin01 + OssinO~sim + O~ (sinOlcos.cos05 
- cosO~s:inOs) (37) 

w/z = 0l + 05cos4- t~6sin0,cos0s (38) 

vsx = - t~l (R' U + e) sin01 +/_) R'cos01 (39) 

v/~ = t~l (R' U + e)cos01 + U R'sin01 (40) 

4.3 C O M P U T A T I O N A L  C O M P L E X I T Y  
In order to get a feeling of the computational complexity of 

six-d.o.f, pantograph manipulators,  the numbers  of 
multiplications (divisions), additions (subtractions) and tran- 
scendental function calls of the inw~rse position and velocity 
analyses of the six-d.o.f., cylindrical type pantograph manipu- 
lator are mumerated and compared with those of a PUMA 
manipulator. These numbers are tabulated in Tables 1 and 2. 
In the enumeration, all the identical groups of variables 
which appear twice or more are only counted once and the 
division in all inverse tangent function call is not counted 
since the FOR'FRAM function ATAM2 is used in computer 
programming. The numbers of computations of the six-d.o.f., 
Cartesian type pantograph manipulator with the differential 
mechanism should be much less than the numbers of the 
cylindrical type manipulator listed in these tables. 

T a b l e  1 Computational complexity of inverse position analysis 

Mult ipl ica-  Addition/ ['ranscenden- 
tal Type tion/ subtraction 

division Function 
PUMA (Hollerbach 
1983) 
PUMA (Paul 1986) 
Cylindrical pantograph 
with parallelogram 
mechanism 

64 

37 

20 

38 

26 

10 

10 

7 11 

T a b l e  2 Computational complexity of inverse velocity analysis 
Multiplicaton/ Addition/ 

Type division subtraction 
PUMA (Hollerbach 1983) 37 25 
PUMA (Pual 1986) 24 19 
Cylindrical pantograph 
with parallelogram 18 9 
mechanism 

v/x = R. l)" (41) 

The last three equations contains only t~l, I2 and O and these 
three joint rates should be solved first. This gives 

O~ = - vsxsinO~ + vs~cosO~ (42) 
R ' U + e  

0 : v/xcos01 + V/ysin01 (43) 
RI 

I2= vs~ (44) 
R 

where V/x, v/y and vs, are the three components of linear 
velocity of the end effector at point F. Finally, the last three 

5. CONCLUSION 

In this paper the mechanical efficiency and kinematics of a 
six-d.o.f., pantograph type manipulators were studied. The 
mechanical efficiencies of pantograph type manipulators and 
conventional open-chain and closed-chain type manipulators 
were evaluated using the concept of modified geometric 
work. The mechanical efficiency of pantograph type manipu- 
lators was found to be the highest. The kinematics of both 
Cartesian and cylindrical type pantograph manipulators was 
studied. Two special mechanisms which simplify the 
kinematics of pantograph type manipula tors  were 
introduced. The computational complexity of the kinematics 
of pantograph type manipulators with these special mecha- 
nisms was evaluated and compared with a PUMA type 
manipulator. 
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Fig. 13 Link attitude of a planar pantograph 

XF = Xa + 11"cosal + 15.cosa2 (48) 

ZF = ZB + 11" sinai + 12" sina2 (49) 

where 

XA-- U .cos r  ZB = V.s in0 
Xr = U.  R1 ZF = V" R 

Move all the terms which do not contain a, to the left. Square 
both sides of Eqs. (48) and (49) and add these two equation 
together. Rearranging the remaining terms gives the follow- 
ing equations : 

A" cosa2 + B" sina2 + C = 0 (50) 

where 

A =  - 2  U . 1 2 ( R ' - c o s r  
B =  - 2 V . 1 2 ( R - c o s O )  
C =  U2(R~-cos r  V 2 ( R - c o s O ) 2 - 1 ~ + l ~  

Let 

and 

cosa2 = {1-  tan 2 ( a J2 )  }/{1 + tan s (a2/2) } 

sine2 = {2tan (a2/2) }/{1 + t a n  2 (a2/2)}. 

Substituting these equations into Eq. (50) gives 

a2=2 . t a  n 1( - B -  (A2+B2-C2) �89  
A - C  ] (51) 


